Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.03.23.22272771

ABSTRACT

Vaccines are the most important means to overcome the SARS-CoV-2 pandemic. They induce specific antibody and T-cell responses but it remains open how well vaccine-induced immunity is preserved over time following homologous and heterologous immunization regimens. Here, we compared the dynamics of humoral and cellular immune responses up to 5 months after homologous or heterologous vaccination with either ChAdOx1-nCoV-19 (ChAd) or BNT162b2 (BNT) or both. Antibody responses significantly waned after vaccination, irrespective of the regimen. The capacity to neutralize SARS-CoV-2 - including variants of concern such as Delta or Omicron - was superior after heterologous compared to homologous BNT vaccination, both of which resulted in longer-lasting humoral immunity than homologous ChAd immunization. T-cell responses showed less waning irrespective of the vaccination regimen. These findings demonstrate that heterologous vaccination with ChAd and BNT is a potent approach to induce long-term humoral and cellular immune protection.

2.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.07.03.21258887

ABSTRACT

Administration of a first dose of the COVID-19 vaccine ChAdOx1 nCoV-19 (Vaxzevria(R), AstraZeneca) is associated with a certain risk for vaccine-induced immune thrombotic thrombocytopenia. Therefore, several countries have recommended replacing the second dose of ChAdOx1 nCoV-19 with an mRNA-based vaccine as a precautionary measure, although data on safety and efficacy of such heterologous prime-boost regimen are sparse. Therefore, vaccinees, who had received a heterologous vaccination using ChAdOx1 nCoV-19 as prime and BNT162b2 (Comirnaty(R), BioNTech-Pfizer) mRNA as boost vaccination were offered SARS-CoV-2 antibody testing to quantify their vaccine-induced neutralizing antibody response. The results were compared to cohorts of healthcare workers or volunteers, who received homologous BNT162b2 or homologous ChAdOx1 nCoV-19 vaccination regimens, respectively. A striking increase of vaccine-induced SARS-CoV-2 neutralizing antibody activity was observed in 229 vaccinees that received a BNT162b2 boost 9 to 12 weeks after ChAdOx1 nCoV-19 prime. In our cohort comprising over 480 individuals, the heterologous vaccination scheme induced significantly higher neutralizing antibody titers than homologous ChAdOx1 nCoV-19 and even than homologous BNT162b2 vaccination. This proves that a single dose of a COVID-19 mRNA vaccine after ChAdOx1 nCoV-19 prime vaccination is sufficient to achieve high neutralizing antibody levels predicting immune protection from SARS-CoV-2 infection, and may even increase vaccine efficacy offering an alternative in a setting of vaccine shortage.


Subject(s)
COVID-19 , Purpura, Thrombotic Thrombocytopenic
SELECTION OF CITATIONS
SEARCH DETAIL